Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
J Phys Chem B ; 127(9): 1995-2001, 2023 03 09.
Article in English | MEDLINE | ID: covidwho-2254251

ABSTRACT

A potential therapeutic strategy for neutralizing SARS-CoV-2 infection is engineering high-affinity soluble ACE2 decoy proteins to compete for binding to the viral spike (S) protein. Previously, a deep mutational scan of ACE2 was performed and has led to the identification of a triple mutant variant, named sACE22.v.2.4, that exhibits subnanomolar affinity to the receptor-binding domain (RBD) of S. Using a recently developed transfer learning algorithm, TLmutation, we sought to identify other ACE2 variants that may exhibit similar binding affinity with decreased mutational load. Upon training a TLmutation model on the effects of single mutations, we identified multiple ACE2 double mutants that bind SARS-CoV-2 S with tighter affinity as compared to the wild type, most notably L79V;N90D that binds RBD similarly to ACE22.v.2.4. The experimental validation of the double mutants successfully demonstrates the use of machine learning approaches for engineering protein-protein interactions and identifying high-affinity ACE2 peptides for targeting SARS-CoV-2.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Angiotensin-Converting Enzyme 2 , Algorithms , Machine Learning , Mutation , Protein Binding
2.
Nat Chem Biol ; 18(3): 342-351, 2022 03.
Article in English | MEDLINE | ID: covidwho-1639481

ABSTRACT

Vaccine hesitancy and emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) escaping vaccine-induced immune responses highlight the urgency for new COVID-19 therapeutics. Engineered angiotensin-converting enzyme 2 (ACE2) proteins with augmented binding affinities for SARS-CoV-2 spike (S) protein may prove to be especially efficacious against multiple variants. Using molecular dynamics simulations and functional assays, we show that three amino acid substitutions in an engineered soluble ACE2 protein markedly augmented the affinity for the S protein of the SARS-CoV-2 WA-1/2020 isolate and multiple VOCs: B.1.1.7 (Alpha), B.1.351 (Beta), P.1 (Gamma) and B.1.617.2 (Delta). In humanized K18-hACE2 mice infected with the SARS-CoV-2 WA-1/2020 or P.1 variant, prophylactic and therapeutic injections of soluble ACE22.v2.4-IgG1 prevented lung vascular injury and edema formation, essential features of CoV-2-induced SARS, and above all improved survival. These studies demonstrate broad efficacy in vivo of an engineered ACE2 decoy against SARS-CoV-2 variants in mice and point to its therapeutic potential.


Subject(s)
Angiotensin-Converting Enzyme 2/chemistry , COVID-19/prevention & control , Protein Engineering , SARS-CoV-2 , Amino Acid Sequence , Amino Acid Substitution , Animals , Antiviral Agents , Drug Discovery , Humans , Lung Injury , Mice , Mice, Transgenic , Models, Molecular , Protein Binding , Protein Conformation , Respiratory Distress Syndrome , Severe Acute Respiratory Syndrome
SELECTION OF CITATIONS
SEARCH DETAIL